Search results for "thin set"

showing 3 items of 3 documents

Thin and fat sets for doubling measures in metric spaces

2011

We consider sets in uniformly perfect metric spaces which are null for every doubling measure of the space or which have positive measure for all doubling measures. These sets are called thin and fat, respectively. In our main results, we give sufficient conditions for certain cut-out sets being thin or fat.

Discrete mathematics28A12 (Primary) 30L10 (Secondary)General MathematicsInjective metric space010102 general mathematicsNull (mathematics)Space (mathematics)01 natural sciencesMeasure (mathematics)Thin setIntrinsic metric010101 applied mathematicsMetric spaceMathematics - Classical Analysis and ODEsMetric (mathematics)Classical Analysis and ODEs (math.CA)FOS: Mathematics0101 mathematicsMathematics
researchProduct

A function whose graph has positive doubling measure

2014

We show that a doubling measure on the plane can give positive measure to the graph of a continuous function. This answers a question by Wang, Wen and Wen. Moreover we show that the doubling constant of the measure can be chosen to be arbitrarily close to the doubling constant of the Lebesgue measure.

Discrete mathematics28A12 (Primary) 30L10 (Secondary)Lebesgue measureApplied MathematicsGeneral Mathematicsta111thin setThin setMathematics - Classical Analysis and ODEsfat setdoubling measureClassical Analysis and ODEs (math.CA)FOS: MathematicsGraph (abstract data type)Computer Science::DatabasesMathematicsProceedings of the American Mathematical Society
researchProduct

Curve packing and modulus estimates

2018

A family of planar curves is called a Moser family if it contains an isometric copy of every rectifiable curve in $\mathbb{R}^{2}$ of length one. The classical "worm problem" of L. Moser from 1966 asks for the least area covered by the curves in any Moser family. In 1979, J. M. Marstrand proved that the answer is not zero: the union of curves in a Moser family has always area at least $c$ for some small absolute constant $c > 0$. We strengthen Marstrand's result by showing that for $p > 3$, the $p$-modulus of a Moser family of curves is at least $c_{p} > 0$.

General MathematicsTHIN SETModulusconformal modulus01 natural sciencesThin setpotential theoryCombinatoricsNull set010104 statistics & probabilityPlanarCIRCLESMathematics - Metric GeometryClassical Analysis and ODEs (math.CA)FOS: Mathematics111 Mathematics0101 mathematicsAbsolute constantMathematicsMoser familyApplied Mathematicsta111010102 general mathematicsMathematical analysisZero (complex analysis)Metric Geometry (math.MG)28A75 (Primary) 31A15 60CXX (Secondary)measure theoryMathematics - Classical Analysis and ODEsFamily of curvespotentiaaliteoriamittateoriaMEASURE ZEROcurve packing problems
researchProduct